Inorg. Chem. **2002**, *41*, 2001−2003

Heterolytic Activation of Hydrogen as a Trigger for Iridium Complex Promoted Activation of Carbon−**Fluorine Bonds**

Paul J. Albietz, Jr., James F. Houlis, and Richard Eisenberg*

*Department of Chemistry, Uni*V*ersity of Rochester, Rochester, New York 14627*

Received February 26, 2002

The cationic iridium(III) complex $[IrCF₃(CO)(dppe)(DIB)][BARF]₂$ where $DIB = o$ -diiodobenzene, dppe $= 1.2$ -bis(diphenylphosphino)ethane, and BARF = $B(3,5-(CF_3)_2C_6H_3)_4^-$ undergoes reaction in
the presence of dihydrogen to form litH-(CO)-(dppe)]+ as the major the presence of dihydrogen to form $[IrH_2(CO)_2(dppe)]^+$ as the major product. Through labeling studies and ¹H and ³¹P{¹H} NMR spectroscopies including parahydrogen measurements, it is shown that the reaction involves conversion of the coordinated $CF₃$ ligand into carbonyl. In this reaction sequence, the initial step is the heterolytic activation of dihydrogen, leading to proton generation which promotes $α$ -C−F bond cleavage. Polarization occurs in the final [IrH₂(CO)₂(dppe)]⁺ product by the reaction of H₂ with the Ir(I) species $[Ir(CO)₂(dppe)]⁺$ that is generated in the course of the CF₃ \rightarrow CO conversion.

The activation of carbon-fluorine bonds has attracted considerable attention in the past decade, in part because of the challenge that such a stable entity represents for facile activation and in part because of interest in rendering inert fluorocarbons more reactive. Reports have described that fluoroalkyls, once coordinated to a metal ion, are subject to α -F electrophilic attack by strong Lewis acids with consequent fluorocarbene generation.¹⁻⁹ In a recent study by Caulton and co-workers, the metal center of an electrophilic trifluoromethyl complex with a labile or vacant coordination

- (1) Brothers, P. J.; Roper, W. R. *Chem. Re*V*.* **¹⁹⁸⁸**, *⁸⁸*, 1293-1326 and references therein.
- (2) Huang, D.; Caulton, K. G. *J. Am. Chem. Soc.* **¹⁹⁹⁷**, *¹¹⁹*, 3185-3186. (3) Huang, D.; Koren, P. R.; Folting, K.; Davidson, E. R.; Caulton, K. G. *J. Am. Chem. Soc.* **²⁰⁰⁰**, *¹²²*, 8916-8931.
- (4) Appleton, T. G.; Berry, R. D.; Hall, J. R.; Neale, D. W. *J. Organomet. Chem.* **¹⁹⁸⁹**, *³⁶⁴*, 249-273.
- (5) Clark, G. R.; Hoskins, S. V.; Roper, W. R. *J. Organomet. Chem.* **1982**,
- *²³⁴*, C9-C12. (6) Burrell, A. K.; Clark, G. R.; Rickard, C. E. F.; Roper, W. R. *J. Organomet. Chem.* **¹⁹⁹⁴**, *⁴⁸²*, 261-269.
- (7) Hughes, R. P.; Rose, P. R.; Rheingold, A. L. *Organometallics* **1993**, *¹²*, 3109-2117.
- (8) Hughes, R. P.; Lindner, D. C.; Rheingold, A. L.; Liable-Sands, L. M. *J. Am. Chem. Soc.* **¹⁹⁹⁷**, *¹¹⁹*, 11544-11545.
- (9) (a) Crespi, A. M.; Shriver, D. F. *Organometallics* **1985**, *4*, 1830. (b) Koola, J. D.; Roddick, D. M. *Organometallics* **1991**, *10*, 591. (c) Richmond, T. G.; Crespi, A. M.; Shriver, D. F. *Organometallics* **1984**, *3*, 314.

10.1021/ic025563l CCC: \$22.00 © 2002 American Chemical Society **Inorganic Chemistry,** Vol. 41, No. 8, 2002 **2001** Published on Web 03/21/2002

site was shown to function in this capacity for intramolecular fluoride transfer.^{2,3} The use of protons as the electrophile for attack on α -F from either coordinated water or added mineral acid has also been documented, $4-8$ and in a number of examples, trifluoromethyl groups have been converted to carbonyl ligands. In the present study, we describe a similar transformation in which heterolytic activation of dihydrogen serves as the trigger for the conversion.¹⁷ The reaction derives from ongoing interest in the chemistry of cationic iridium- (III) complexes having labile ligands. In this regard, we recently reported [IrCF₃(CO)(dppe)(DIB)][BARF]₂ (1) and its methyl analogue, where $DIB = o$ -diiodobenzene, dppe $= 1,2$ -bis(diphenylphosphino)ethane, and BARF $= B(3,5 (CF_3)_2C_6H_3)_4^{-10}$ The weakly chelating DIB was found to be labile enough for facile substitution and stable enough for isolation and storage of the complex. Both complex **1** and its methyl analogue were also determined to function as cationic initiators for polymerization of different olefins.

Complex **1** reacts slowly with dihydrogen over several hours at room temperature forming one major product. ¹H and ${}^{31}P{^1H}$ NMR spectra at the end of the reaction, Figure 1, reveal a complex with inequivalent phosphine donors (*δ* 28.9 and 24.3, $J_{P-P} = 2.7$ Hz) and two hydride ligands observable at δ -9.83 (ddd, J_{P-H} = 108 and 13.6 Hz, J_{H-H} $=$ 4.4 Hz) and -10.84 (td, J_{P-H} = 14.8 Hz). The coupling pattern of the δ -9.83 resonance indicates both trans and cis orientations relative to the two phosphine donors of dppe, while the coupling of the δ -10.84 resonance shows that it is cis to both phosphine donors. The hydride coupling patterns are thus similar to those previously reported for IrH2- $(CO)(dppe)X$ complexes,^{11,12} but the nature of X was uncertain based on the absence of any observable ${}^{1}H-{}^{19}F$
coupling or ${}^{19}F$ resonance corresponding to a metal-bound coupling or 19F resonance corresponding to a metal-bound $CF₃$ or $CF₂$ ligand.

An electrospray MS analysis of the product solution showed a parent ion peak corresponding to 26 mass units more than $I_rH_2(CO)(dppe)$. Since H_2 reductive elimination

- (11) Johnson, C. E.; Eisenberg, R. *J. Am. Chem. Soc.* **¹⁹⁸⁵**, *¹⁰⁷*, 3148- 3160.
- (12) Johnson, C. E.; Fisher, B. J.; Eisenberg, R. *J. Am. Chem. Soc.* **1983**, *¹⁰⁵*, 7772-7774.

^{*} Author to whom correspondence should be addressed. E-mail: RSE7@chem.rochester.edu.

⁽¹⁰⁾ Albietz, P. J., Jr.; Cleary, B. P.; Paw, W.; Eisenberg, R. *J. Am. Chem. Soc.* **²⁰⁰¹**, *¹²³*, 12091-12092.

Figure 1. ¹H (hydride region) and ${}^{31}P{^1H}$ NMR spectra from reaction of **1** with H2. (a) Hydride region before (top trace) and after (bottom trace) addition of ¹³CO to 2: hydrides at δ -9.83 ($J_{\text{C-H}}$ = 5.2 Hz, trans to ³¹P) and -10.84 ($J_{\text{C-H}} = 40$ and 6 Hz, trans to ¹³CO). (b) ³¹P NMR spectra before (top trace) and after (bottom trace) addition of 13CO to **2**: dppe phosphines at δ 28.92 (ddd, $J_{C-P} = 98$ and 7.2 Hz, trans to ¹³CO) and 24.28 (m). (c) The δ 28.92 resonance in the ³¹P{¹H} spectrum obtained from reaction using $1 - {}^{13}CO$ with H₂: the coupling pattern indicates scrambling of the 12CO and 13CO ligands of **2**.

from the dihydride product occurs readily based on parahydrogen induced polarization results described below and since the ESMS experiment proceeds under conditions strongly favoring reductive elimination, 13 the observed ion corresponds to a dehydrogenated species and the remaining ligand has a mass of 28. An FT-IR spectrum of the product obtained using D_2 to eliminate M-H stretches revealed two bands at 2122 and 2088 cm^{-1} , thereby establishing CO as the undetermined ligand. Definitive confirmation of the major product as $I_rH_2(CO)_2(dppe)^+$ (2) was achieved by exchange of 13CO into the product, yielding the ¹ H and 31P NMR

spectra shown in Figure 1 with increased complexity of ¹H and 31P resonances due to coupling of hydride and phosphine ligands to *two* 13CO ligands (see Figure 1 caption for coupling constants).

The reaction of 1 with H_2 was investigated using parahydrogen induced polarization (PHIP)¹⁴ to shed light on H_2 activation in the reaction and possibly observe reaction intermediates. The PHIP-enhanced spectrum (see Supporting Information) is observed after heating a dichloromethane solution of **1** to 45 °C in the NMR spectrometer. The major polarized resonances are those of final product **2**, which would result from H_2 oxidative addition to Ir(CO)₂(dppe)⁺. A second set of polarized resonances is also seen at δ -8.44 (ddd, $J_{\text{H-H}} = 4.4 \text{ Hz}$, $J_{\text{P-H}} = 112 \text{ and } 16 \text{ Hz}$) and -17.40 Hz (ddd, $J_{H-H} = 4.4$ Hz, $J_{P-H} = 11$ and 15 Hz), but the lack of additional coupling to CF_3 or CF_2 ligands indicates that these resonances do not result from an initial H_2 addition product. In fact, when the reaction is rerun with a different sample of **1**, these resonances are only seen *after* the formation of **2**. ¹⁵ The PHIP experiments thus do not give evidence of any *initial* species formed from H_2 addition to 1 such as an Ir-(V) dihydride, which would suggest that initial dihydrogen activation proceeds via heterolytic splitting of H_2 . The reaction of 1 with H_2 may proceed via a dihydrogen complex, and it is well-known that cationic dihydrogen complexes readily dissociate $H^{+,16}$ This conclusion means that transformation of **1** including reduction of Ir(III) takes place *prior* to the PHIP-producing dihydrogen addition. The observation of PHIP in 2 indicates that H_2 addition to the metal center is pairwise and that the cycle of H_2 addition and elimination occurs readily for this system. Another species identified in the PHIP spectrum is the monohydride complex [IrH(CO)- (DIB)(dppe)][BARF]2 that has been prepared independently from IrH(CO)(dppe)(OTf)₂ + DIB + Na⁺BARF⁻; this species does not show polarization and is not on the path to producing **2**.

The fate of the CF_3 group in 1 and the origin of the second carbonyl were explored by carrying out the reaction of H_2 with 13CO-labeled **1**. Prior experiments had failed to give any evidence of $CHF₃$ (a possible reductive elimination product) or any other readily discernible organo-fluorine compound originating from the trifluoromethyl ligand despite ¹⁹F NMR spectral analysis at -94 °C (bp CF₃H = -84 °C) or GC/MS analysis of the reaction mixtures. From the reaction between $1\text{-}{}^{13}CO$ (93% ¹³CO enriched) and H₂, it was established that unlabeled CO is generated, leading to a mixture of ca. 50% labeled isotopomers of **2**. This is shown definitively by the ${}^{31}P{^1H}$ NMR resonance at δ 28.9 in

⁽¹³⁾ The electrospray MS analyzed for the iridium(I) complex $Ir(CO)_{2}$ -(dppe)+. Under the conditions of the analysis, the sample is injected into a nitrogen stream at 300 $^{\circ}$ C leading to facile H_2 reductive elimination.

^{(14) (}a) Eisenberg, R. *Acc. Chem. Res.* **¹⁹⁹¹**, *²⁴*, 110-116. (b) Natterer, J.; Bargon, J. *Prog. Nucl. Magn. Reson. Spectrosc.* **¹⁹⁹⁷**, *³¹*, 293- 315. (c) Morran, P. D.; Duckett, S. B.; Howe, P. R.; McGrady, J. E.; Colebrooke, S. A.; Eisenberg, R.; Partridge, M. G.; Lohman, J. A. B. *J. Chem. Soc., Dalton Trans.* **¹⁹⁹⁹**, 3949-3960. (d) Duckett, S. B.; Sleigh, C. J. *Prog. Nucl. Magn. Reson. Spectrosc.* **¹⁹⁹⁹**, *²³*, 71-92.

⁽¹⁵⁾ The second set of polarized resonances may be due to $I_rH_2Cl(CO)$ -(dppe) based on the chemical shift of the upfield hydride resonance.

⁽¹⁶⁾ Kubas, G. J. *Metal Dihydrogen and σ-Bond Complexes*; Kluwer Academic/Plenum Publishers: New York, 2001.

⁽¹⁷⁾ Hughes, R. P.; Smith, J. M. *J. Am. Chem. Soc.* **¹⁹⁹⁹**, *¹²¹*, 6084- 6085.

Figure 1c, which provides evidence of the phosphine being trans *and* cis to ∼1:1 mixtures of labeled and unlabeled carbonyl ligands. The labeling experiment, the 19 F NMR analysis of reaction solutions, and the dominance of **2** as the final metal complex product give compelling support to the notion that the second carbonyl results from the $CF₃$ ligand.

In previously reported studies, $1,4-9$ the conversion of coordinated $CF₃$ to CO has been promoted by electrophilic attack of strong Lewis acids or mineral acids on an α -F atom followed by addition of H_2O to the resulting difluorocarbene ligand. In the present study, weak ligation by DIB allows H_2 coordination and heterolytic activation to yield H^+ for α -F attack.¹⁷ It is possible that *η*¹-DIB facilitates this proton transfer process. The elimination of HE then initiates a transfer process. The elimination of HF then initiates a sequence that includes $CF₂$ hydration from adventitious water, proton loss, and two additional HF eliminations leading to the Ir(I) species $Ir(CO)₂(dppe)^{+}$. Scheme 1 illustrates some of the key steps and intermediates in this conversion. Indirect support for the importance of H^+ generation in promoting this sequence is given by the fact that while facile substitution of MeCN into **1** proceeds by generation of the labile species [Ir(CF₃)(CO)(MeCN)(*η*¹-DIB)(dppe)]²⁺, a similar conversion of CF_3 into CO is not observed.¹⁰ While this η ¹-DIB species is capable of functioning as an internal Lewis acid for α -F abstraction, it does not do so rapidly enough to initiate the conversion relative to completing the substitution to give $[Ir(CF₃)(CO)(MeCN)₂$ - $(dppe)$ ²⁺.

The described reactivity of **1** with dihydrogen illustrates the Lewis acidic behavior of the Ir(III) metal center, leading to heterolytic activation of H_2 , a reactivity mode often seen with Ru(II) but rarely with Ir(III). The resultant H^+ genera**Scheme 1**

tion and the lability of the Ir(III) center derived from **1** promote the facile cleavage of C-F bonds and the unusual conversion of trifluoromethyl to coordinated CO.

Acknowledgment. We thank the National Science Foundation (Grant CHE-0092446) for support of this work. We also wish to thank Professors Charles P. Casey and William D. Jones and Dr. Alexei Permin for invaluable discussions.

Note Added after ASAP: Reference 17, which involves hydrogen addition for the activation of α -C-F bonds, was inadvertently omitted from the version of this communication posted ASAP on March 21, 2002. It is included in the version posted on April 15, 2002.

Supporting Information Available: Experimental details. This material is available free of charge via the Internet at http:// pubs.acs.org.

IC025563L