Inorg. Chem. 2002, 41, 2001–2003

Inorganic Chemistry

Heterolytic Activation of Hydrogen as a Trigger for Iridium Complex Promoted Activation of Carbon–Fluorine Bonds

Paul J. Albietz, Jr., James F. Houlis, and Richard Eisenberg*

Department of Chemistry, University of Rochester, Rochester, New York 14627

Received February 26, 2002

The cationic iridium(III) complex [IrCF₃(CO)(dppe)(DIB)][BARF]₂ where DIB = *o*-diiodobenzene, dppe = 1,2-bis(diphenylphosphino)ethane, and BARF = B(3,5-(CF₃)₂C₆H₃)₄⁻ undergoes reaction in the presence of dihydrogen to form [IrH₂(CO)₂(dppe)]⁺ as the major product. Through labeling studies and ¹H and ³¹P{¹H} NMR spectroscopies including parahydrogen measurements, it is shown that the reaction involves conversion of the coordinated CF₃ ligand into carbonyl. In this reaction sequence, the initial step is the heterolytic activation of dihydrogen, leading to proton generation which promotes α -C–F bond cleavage. Polarization occurs in the final [IrH₂(CO)₂(dppe)]⁺ product by the reaction of H₂ with the Ir(I) species [Ir(CO)₂(dppe)]⁺ that is generated in the course of the CF₃ \rightarrow CO conversion.

The activation of carbon-fluorine bonds has attracted considerable attention in the past decade, in part because of the challenge that such a stable entity represents for facile activation and in part because of interest in rendering inert fluorocarbons more reactive. Reports have described that fluoroalkyls, once coordinated to a metal ion, are subject to α -F electrophilic attack by strong Lewis acids with consequent fluorocarbene generation.¹⁻⁹ In a recent study by Caulton and co-workers, the metal center of an electrophilic trifluoromethyl complex with a labile or vacant coordination

- (2) Huang, D.; Caulton, K. G. J. Am. Chem. Soc. 1997, 119, 3185–3186.
 (3) Huang, D.; Koren, P. R.; Folting, K.; Davidson, E. R.; Caulton, K. G.
- J. Am. Chem. Soc. 2000, 122, 8916–8931.
 (4) Appleton, T. G.; Berry, R. D.; Hall, J. R.; Neale, D. W. J. Organomet. Chem. 1989, 364, 249–273.
- (5) Clark, G. R.; Hoskins, S. V.; Roper, W. R. J. Organomet. Chem. 1982, 234, C9-C12.
- (6) Burrell, A. K.; Clark, G. R.; Rickard, C. E. F.; Roper, W. R. J. Organomet. Chem. 1994, 482, 261–269.
- (7) Hughes, R. P.; Rose, P. R.; Rheingold, A. L. Organometallics 1993, 12, 3109–2117.
- (8) Hughes, R. P.; Lindner, D. C.; Rheingold, A. L.; Liable-Sands, L. M. J. Am. Chem. Soc. 1997, 119, 11544–11545.
- (9) (a) Crespi, A. M.; Shriver, D. F. Organometallics 1985, 4, 1830. (b) Koola, J. D.; Roddick, D. M. Organometallics 1991, 10, 591. (c) Richmond, T. G.; Crespi, A. M.; Shriver, D. F. Organometallics 1984, 3, 314.

10.1021/ic025563I CCC: \$22.00 © 2002 American Chemical Society Published on Web 03/21/2002

site was shown to function in this capacity for intramolecular fluoride transfer.^{2,3} The use of protons as the electrophile for attack on α -F from either coordinated water or added mineral acid has also been documented,⁴⁻⁸ and in a number of examples, trifluoromethyl groups have been converted to carbonyl ligands. In the present study, we describe a similar transformation in which heterolytic activation of dihydrogen serves as the trigger for the conversion.¹⁷ The reaction derives from ongoing interest in the chemistry of cationic iridium-(III) complexes having labile ligands. In this regard, we recently reported [IrCF₃(CO)(dppe)(DIB)][BARF]₂ (1) and its methyl analogue, where DIB = o-diiodobenzene, dppe = 1,2-bis(diphenylphosphino)ethane, and BARF = B(3,5- $(CF_3)_2C_6H_3)_4^{-.10}$ The weakly chelating DIB was found to be labile enough for facile substitution and stable enough for isolation and storage of the complex. Both complex 1 and its methyl analogue were also determined to function as cationic initiators for polymerization of different olefins.

Complex 1 reacts slowly with dihydrogen over several hours at room temperature forming one major product. ¹H and ³¹P{¹H} NMR spectra at the end of the reaction, Figure 1, reveal a complex with inequivalent phosphine donors (δ 28.9 and 24.3, $J_{P-P} = 2.7$ Hz) and two hydride ligands observable at δ –9.83 (ddd, $J_{\rm P-H}$ = 108 and 13.6 Hz, $J_{\rm H-H}$ = 4.4 Hz) and -10.84 (td, $J_{P-H} = 14.8$ Hz). The coupling pattern of the δ -9.83 resonance indicates both trans and cis orientations relative to the two phosphine donors of dppe, while the coupling of the δ -10.84 resonance shows that it is cis to both phosphine donors. The hydride coupling patterns are thus similar to those previously reported for IrH2-(CO)(dppe)X complexes,^{11,12} but the nature of X was uncertain based on the absence of any observable ¹H-¹⁹F coupling or ¹⁹F resonance corresponding to a metal-bound CF₃ or CF₂ ligand.

An electrospray MS analysis of the product solution showed a parent ion peak corresponding to 26 mass units more than $IrH_2(CO)(dppe)$. Since H_2 reductive elimination

 $[\]ast$ Author to whom correspondence should be addressed. E-mail: RSE7@chem.rochester.edu.

⁽¹⁾ Brothers, P. J.; Roper, W. R. *Chem. Rev.* **1988**, 88, 1293–1326 and references therein.

⁽¹⁰⁾ Albietz, P. J., Jr.; Cleary, B. P.; Paw, W.; Eisenberg, R. J. Am. Chem. Soc. **2001**, *123*, 12091–12092.

⁽¹¹⁾ Johnson, C. E.; Eisenberg, R. J. Am. Chem. Soc. 1985, 107, 3148–3160.

⁽¹²⁾ Johnson, C. E.; Fisher, B. J.; Eisenberg, R. J. Am. Chem. Soc. 1983, 105, 7772–7774.

Figure 1. ¹H (hydride region) and ³¹P{¹H} NMR spectra from reaction of **1** with H₂. (a) Hydride region before (top trace) and after (bottom trace) addition of ¹³CO to **2**: hydrides at δ –9.83 (J_{C-H} = 5.2 Hz, trans to ³¹P) and –10.84 (J_{C-H} = 40 and 6 Hz, trans to ¹³CO). (b) ³¹P NMR spectra before (top trace) and after (bottom trace) addition of ¹³CO to **2**: dppe phosphines at δ 28.92 (ddd, J_{C-P} = 98 and 7.2 Hz, trans to ¹³CO) and 24.28 (m). (c) The δ 28.92 resonance in the ³¹P{¹H} spectrum obtained from reaction using **1**-¹³CO with H₂: the coupling pattern indicates scrambling of the ¹²CO and ¹³CO ligands of **2**.

from the dihydride product occurs readily based on parahydrogen induced polarization results described below and since the ESMS experiment proceeds under conditions strongly favoring reductive elimination,¹³ the observed ion corresponds to a dehydrogenated species and the remaining ligand has a mass of 28. An FT-IR spectrum of the product obtained using D₂ to eliminate M–H stretches revealed two bands at 2122 and 2088 cm⁻¹, thereby establishing CO as the undetermined ligand. Definitive confirmation of the major product as $IrH_2(CO)_2(dppe)^+$ (2) was achieved by exchange of ¹³CO into the product, yielding the ¹H and ³¹P NMR spectra shown in Figure 1 with increased complexity of ¹H and ³¹P resonances due to coupling of hydride and phosphine ligands to *two* ¹³CO ligands (see Figure 1 caption for coupling constants).

The reaction of 1 with H₂ was investigated using parahydrogen induced polarization (PHIP)¹⁴ to shed light on H₂ activation in the reaction and possibly observe reaction intermediates. The PHIP-enhanced spectrum (see Supporting Information) is observed after heating a dichloromethane solution of 1 to 45 °C in the NMR spectrometer. The major polarized resonances are those of final product 2, which would result from H₂ oxidative addition to $Ir(CO)_2(dppe)^+$. A second set of polarized resonances is also seen at $\delta - 8.44$ (ddd, $J_{H-H} = 4.4$ Hz, $J_{P-H} = 112$ and 16 Hz) and -17.40 (ddd, $J_{H-H} = 4.4$ Hz, $J_{P-H} = 11$ and 15 Hz), but the lack of additional coupling to CF₃ or CF₂ ligands indicates that these resonances do not result from an initial H₂ addition product. In fact, when the reaction is rerun with a different sample of 1, these resonances are only seen *after* the formation of 2.¹⁵ The PHIP experiments thus do not give evidence of any *initial* species formed from H_2 addition to 1 such as an Ir-(V) dihydride, which would suggest that initial dihydrogen activation proceeds via heterolytic splitting of H₂. The reaction of 1 with H₂ may proceed via a dihydrogen complex, and it is well-known that cationic dihydrogen complexes readily dissociate H⁺.¹⁶ This conclusion means that transformation of 1 including reduction of Ir(III) takes place prior to the PHIP-producing dihydrogen addition. The observation of PHIP in 2 indicates that H_2 addition to the metal center is pairwise and that the cycle of H₂ addition and elimination occurs readily for this system. Another species identified in the PHIP spectrum is the monohydride complex [IrH(CO)-(DIB)(dppe)][BARF]₂ that has been prepared independently from $IrH(CO)(dppe)(OTf)_2 + DIB + Na^+BARF^-$; this species does not show polarization and is not on the path to producing 2.

The fate of the CF₃ group in **1** and the origin of the second carbonyl were explored by carrying out the reaction of H₂ with ¹³CO-labeled **1**. Prior experiments had failed to give any evidence of CHF₃ (a possible reductive elimination product) or any other readily discernible organo–fluorine compound originating from the trifluoromethyl ligand despite ¹⁹F NMR spectral analysis at -94 °C (bp CF₃H = -84 °C) or GC/MS analysis of the reaction mixtures. From the reaction between **1**-¹³CO (93% ¹³CO enriched) and H₂, it was established that unlabeled CO is generated, leading to a mixture of ca. 50% labeled isotopomers of **2**. This is shown definitively by the ³¹P{¹H} NMR resonance at δ 28.9 in

⁽¹³⁾ The electrospray MS analyzed for the iridium(I) complex Ir(CO)₂-(dppe)⁺. Under the conditions of the analysis, the sample is injected into a nitrogen stream at 300 °C leading to facile H₂ reductive elimination.

^{(14) (}a) Eisenberg, R. Acc. Chem. Res. 1991, 24, 110–116. (b) Natterer, J.; Bargon, J. Prog. Nucl. Magn. Reson. Spectrosc. 1997, 31, 293–315. (c) Morran, P. D.; Duckett, S. B.; Howe, P. R.; McGrady, J. E.; Colebrooke, S. A.; Eisenberg, R.; Partridge, M. G.; Lohman, J. A. B. J. Chem. Soc., Dalton Trans. 1999, 3949–3960. (d) Duckett, S. B.; Sleigh, C. J. Prog. Nucl. Magn. Reson. Spectrosc. 1999, 23, 71–92.

⁽¹⁵⁾ The second set of polarized resonances may be due to IrH₂Cl(CO)-(dppe) based on the chemical shift of the upfield hydride resonance.

⁽¹⁶⁾ Kubas, G. J. Metal Dihydrogen and σ-Bond Complexes; Kluwer Academic/Plenum Publishers: New York, 2001.

⁽¹⁷⁾ Hughes, R. P.; Smith, J. M. J. Am. Chem. Soc. 1999, 121, 6084– 6085.

Figure 1c, which provides evidence of the phosphine being trans *and* cis to \sim 1:1 mixtures of labeled and unlabeled carbonyl ligands. The labeling experiment, the ¹⁹F NMR analysis of reaction solutions, and the dominance of **2** as the final metal complex product give compelling support to the notion that the second carbonyl results from the CF₃ ligand.

In previously reported studies,^{1,4-9} the conversion of coordinated CF₃ to CO has been promoted by electrophilic attack of strong Lewis acids or mineral acids on an α -F atom followed by addition of H₂O to the resulting difluorocarbene ligand. In the present study, weak ligation by DIB allows H_2 coordination and heterolytic activation to yield H^+ for α -F attack.¹⁷ It is possible that η^1 -DIB facilitates this proton transfer process. The elimination of HF then initiates a sequence that includes CF₂ hydration from adventitious water, proton loss, and two additional HF eliminations leading to the Ir(I) species $Ir(CO)_2(dppe)^+$. Scheme 1 illustrates some of the key steps and intermediates in this conversion. Indirect support for the importance of H⁺ generation in promoting this sequence is given by the fact that while facile substitution of MeCN into 1 proceeds by generation of the labile species $[Ir(CF_3)(CO)(MeCN)(\eta^{1}-$ DIB)(dppe)]²⁺, a similar conversion of CF_3 into CO is not observed.¹⁰ While this η^1 -DIB species is capable of functioning as an internal Lewis acid for α -F abstraction, it does not do so rapidly enough to initiate the conversion relative to completing the substitution to give [Ir(CF₃)(CO)(MeCN)₂- $(dppe)]^{2+}$.

The described reactivity of **1** with dihydrogen illustrates the Lewis acidic behavior of the Ir(III) metal center, leading to heterolytic activation of H_2 , a reactivity mode often seen with Ru(II) but rarely with Ir(III). The resultant H^+ generaScheme 1

tion and the lability of the Ir(III) center derived from 1 promote the facile cleavage of C-F bonds and the unusual conversion of trifluoromethyl to coordinated CO.

Acknowledgment. We thank the National Science Foundation (Grant CHE-0092446) for support of this work. We also wish to thank Professors Charles P. Casey and William D. Jones and Dr. Alexei Permin for invaluable discussions.

Note Added after ASAP: Reference 17, which involves hydrogen addition for the activation of α -C-F bonds, was inadvertently omitted from the version of this communication posted ASAP on March 21, 2002. It is included in the version posted on April 15, 2002.

Supporting Information Available: Experimental details. This material is available free of charge via the Internet at http:// pubs.acs.org.

IC025563L